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We report on a search for second generation leptoquarks (LQ) produced in pp collisions atp
s = 1:8 TeV using the D� detector at Fermilab. Second generation leptoquarks are assumed to

be produced in pairs and to decay to either � or � and either a strange or a charm quark (q). Limits
are placed on �(pp ! LQLQ ! �� + jets) as a function of the mass of the leptoquark. For equal
branching ratios to �q and �q, second generation scalar leptoquarks with a mass below 160 GeV/c2,
vector leptoquarks with anomalous minimal vector couplings with a mass below 240 GeV/c2, and
vector leptoquarks with Yang-Mills couplings with a mass below 290 GeV/c2, are excluded at the
95% con�dence level.

2



Leptoquarks (LQ) are hypothetical particles that carry
color, fractional electric charge, and both lepton and
baryon number. They appear in several extended gauge
theories and composite models beyond the standard
model [1]. Leptoquarks with universal couplings to all
lepton avors would give rise to avor-changing neutral
currents, and are therefore tightly constrained by exper-
imental data [2]. To satisfy experimental constraints on
avor-changing neutral currents, leptoquarks that couple
only to second generation leptons and quarks are consid-
ered.
This Letter reports on a search for second genera-

tion leptoquark pairs produced in pp interactions at
a center-of-mass energy

p
s = 1.8 TeV. They are as-

sumed [3] to be produced dominantly via the strong
interaction, pp ! g +X ! LQLQ+X. The search is
conducted for the signature where one of the lepto-
quarks decays via LQ ! muon + quark and the other
via LQ ! neutrino + quark, where the quark may be ei-
ther a strange or a charm quark. The corresponding ex-
perimental cross section is 2�(1� �) � �(pp! LQLQ)
with � the unknown branching fraction to a charged lep-
ton (e; �; � ) and a quark (jet) and (1� �) the branching
fraction to a neutrino (�) and a jet. The search con-
siders leptoquarks with scalar or vector couplings in the
�� + jets �nal state. Additional details on this anal-
ysis may be found in reference 4. Previous studies by
the D� [5,6] and CDF [7] collaborations have considered
the �� + jets �nal state for scalar couplings, resulting
in limits of 140 GeV/c2 and 160 GeV/c2 respectively for
� = 1/2.
The D� detector [8] consists of three major compo-

nents: an inner detector for tracking charged particles, a
uranium{liquid argon calorimeter for measuring electro-
magnetic and hadronic showers, and a muon spectrom-
eter consisting of a magnetized iron toroid and three
layers of drift tubes. Jets are measured with an en-
ergy resolution of approximately �(E) = 0.8/

p
E (E in

GeV). Muons are measured with a momentum resolution
�(1=p) = 0:18(p� 2)=p2 � 0:003 (p in GeV/c).
Event samples are obtained from triggers requiring

the presence of a muon candidate with transverse mo-
mentum p�T > 5 GeV/c in the �ducial region j��j < 1:7
(� � � ln[tan(1

2
�)], where � is the polar angle of the track

with respect to the z axis taken along the proton beam
line), and at least one jet candidate with transverse en-

ergy Ej

T
> 8 GeV and j�jj < 2.5. The data used for this

analysis correspond to an integrated luminosity of 94�5
pb�1 collected during the 1993{1995 and 1996 Tevatron
collider runs at Fermilab.
In the �nal event sample, muon candidates are required

to have a reconstructed track originating from the inter-
action region consistent with a muon of p�T > 25 GeV/c
and j��j < 0:95. To reduce backgrounds from heavy
quark production, muons must be isolated from jets
(�R(�; jet) > 0:5 for Ej

T > 15 GeV, where �R(�; jet)
is the separation between the muon and jet in the � � �

plane), and have energy deposition in the calorimeter
consistent with that of a minimum ionizing particle.
Events are required to have one muon satisfying these
requirements. Events containing a second muon which
satisfy these requirements, with the �ducial requirement
relaxed to j��j < 1:7, are rejected.
Jets are measured in the calorimeters and are recon-

structed using a cone algorithm with a radius R = 0:5
(R �

p
��2 +��2). Jets must be produced within

j�jj < 2:0, and have Ej
T > 15 GeV; with the most ener-

getic jet in each event required to have j�jj < 1:5.
The transverse energy of the neutrino is not directly

measured, but is inferred from the energy imbalance in
the calorimeters and the momentum of the reconstructed
muon. Events are required to have missing transverse
energy E/T > 30 GeV. To ensure thatE/T is not dominated
by mismeasurement of the muon pT , events having E/T
within � � 0:1 radians of the muon track in azimuth are
rejected.
To provide further rejection against dimuon events in

which one of the muons was not identi�ed in the spec-
trometer, muons are identi�ed by a pattern of isolated
energy deposited in the longitudinal segments of the
hadronic calorimeter [9]. Any event where such deposited
energy lies along a track originating from the interaction
vertex in the region j�j < 1:7 and is within 0.25 radians
in azimuth of the direction of the E/T vector is rejected.
Each candidate event is required to pass a selection

based on the expected LQ event topology. Since the de-
cay products of the LQ are �q or �q, the muon and neu-
trino in LQ pair decays come from di�erent parent parti-
cles nearly at rest and are therefore uncorrelated. For the
primary background events (e.g. W + jets), the two lep-
tons have the same parent. Similar reasoning holds for
the jets. Correlated backgrounds are rejected with the
requirement of signi�cant separation between the muon
and E/T (j��(�;E/T )j > 0:3) and between the two leading
jets (�R(j1; j2) > 1:4).
The ISAJET [10] Monte Carlo event generator is used to

simulate the scalar leptoquark (SLQ) signal, and PYTHIA
[11] is used for the vector leptoquark (VLQ) signal. The
e�ciencies for VLQ and SLQ are consistent within dif-
ferences due to the choice of generator. This is veri�ed
by choosing a test point at which both scalar and vector
Monte Carlo events from the same generator are com-
pared. Therefore, e�ciencies obtained from the two sim-
ulations are not distinguished. In addition, the e�cien-
cies for vector leptoquarks are insensitive to di�erences
between minimal vector (�G = 1; �G = 0 [12]) and Yang-
Mills (�G = 0; �G = 0 [12]) couplings at large mass [6]
(MVLQ > 200 GeV/c2). The leptoquark production cross
sections used for the SLQ are from next-to-leading or-
der (NLO) calculations [13] with a renormalization scale
� = MSLQ and uncertainties determined from variation
of the renormalization/factorization scales from 2MSLQ

to 1

2
MSLQ . The VLQ cross sections are leading order (LO)

calculations at a scale � = MVLQ [12].
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FIG. 1. Kinematic distributions for �� + jets events. The
quantities shown in (a){(d) are used as inputs into the neural
network (see text). The shaded regions give the background
expectations, the square points are the �� + jets data, and
the triangular points are signal Monte Carlo.

The dominant backgrounds, from W + jets and
Z + jets, are simulated using VECBOS [14] for parton
level generation and HERWIG [15] for parton fragmen-
tation. Background due to WW production is simulated
with PYTHIA [11]. Additional background from tt decays
into one or more muons and two or more jets, is simu-
lated using the HERWIG Monte Carlo program for a top
quark mass of 170 GeV/c2. Monte Carlo samples are
processed through a detector simulation program based
on the GEANT [16] package.
With the initial data selection described above, there

are 107 events, consistent with a background of 106�30
events (see Fig. 1). The dominant background is
W + jets with 100�30 events. Other backgrounds are
2.7�0.7 (Z + jets), 2.4�0.8 (tt), and 1.5�0.6 (WW ).
The uncertainty in the background is dominated by the
statistical uncertainty in the W + jets simulation and
the systematic uncertainty in the W + jets cross section.
The expected signal for 160 GeV/c2 scalar leptoquarks is
4:8�0:7 events. Signal estimations are shown for a SLQ
mass of 160 GeV/c2 using the NLO cross section with a
scale of 2MSLQ .
To separate any possible signal from the backgrounds,

a neural network (NN) [17] with inputs: Ej1
T ; E

j2
T ; p

�
T and

E/T and nine nodes in a single hidden layer is used. The
network is trained on a mixture of W + jets, Z + jets
and tt background Monte Carlo events, and an indepen-
dently generated signal Monte Carlo sample at a mass
of 160 GeV/c2. Figure 1 shows distributions of the four
input quantities and Fig. 2 the network output (referred
to as the discriminant, DNN). No evidence of a signal is
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FIG. 2. Output of the neural network. The network calcu-
lates a value for each event based on the inputs (shown in Fig.
1) and a set of internal values which are determined during
network training on signal and background Monte Carlo.

observed in either the discriminant distribution or any of
the kinematic distributions. For setting limits, the selec-
tion on DNN is optimized by maximizing a measure of
sensitivity [18] de�ned by

S(DNN) �
nX

k=0

P (k; b)M95%
A (k; b; s(MLQ))

where P (k; b) = e�bbk=k! is a Poisson coe�cient with k
being any possible number of observable events, b the ex-
pected mean number of background events, and s(MLQ)

the expected signal for a given leptoquark mass. M95%
A

is an approximate [19] mass limit at the 95% con�dence
level for a given k, s and b. S(DNN) is the sum of the
approximate mass limits, weighted by the probability of
observing k = 0; 1; 2; : : : ; n (P (n; b) < 0:05) events for a
particular choice of the DNN selection criterion.
By maximizing the value of S(DNN) a discriminant

selection of DNN > 0:9 is obtained. With this selection,
no events remain in the data, which is consistent with an
expected background of 0:7�0:9 events. The remaining
background is dominated by tt (0.6�0.2 events). The
uncertainty on the total background is dominated by the
statistical and systematic uncertainties from W + jets.
Table I shows the signal detection e�ciencies and up-

per limits [20] on the cross section at the 95% con�dence
level as a function of the leptoquark mass. The domi-
nant systematic uncertainty on the signal e�ciency is due
to the simulation, (initial and �nal state radiation, par-
ton distribution function, renormalization scale, choice
of generator) with a 10% uncertainty. The systematic
uncertainties shown include approximately equal contri-
butions from uncertainty in the jet energy scale [21] and

4



LQ Mass e�ciency �95% BR��SLQ BR��MV BR��YM
(GeV/c2) (%) (pb) (pb) (pb) (pb)

100 3:7�0:2�0:6 0:94 2:8 53 430
120 5:0�0:2�0:7 0:72 2:2 23 150
140 7:2�0:3�1:1 0:47 0:75 10 50
160 10:3�0:3�1:5 0:33 0:34 4:0 25
180 12:2�0:3�1:8 0:27 0:16 2:0 10
200 13:4�0:3�2:0 0:25 0:08 1:0 5:0
220 14:1�0:3�2:1 0:24 0:04 0:45 2:5
240 15:2�0:3�2:3 0:23 0:02 0:23 1:3
260 15:5�0:3�2:3 0:22 0:01 0:13 0:60
280 16:3�0:4�2:4 0:21 0:06 0:30
300 15:7�0:4�2:3 0:22 0:03 0:18
350 16:4�0:4�2:4 0:21 0:03
400 17:2�0:4�2:6 0:20

TABLE I. Signal detection e�ciencies (with statistical and
systematic uncertainty) and cross section limits (95% CL) for
leptoquarks in the �� + jets decay channel. Also shown for
comparison are the expected cross sections for � = 1

2
. �SLQ

denotes the theoretical cross section for scalar leptoquarks
with a scale 2MSLQ , �MV the cross section for vector lepto-
quarks with anomalous minimal vector couplings, and �YM
leptoquarks with vector Yang-Mills couplings.

the trigger e�ciency/spectrometer resolution for high pT
muons (6.6% and 6.4% respectively). The overall sys-
tematic uncertainty for the signal e�ciency is 15%.
The limits on the observed cross section are shown in

Fig. 3, and are compared with the theoretical cross sec-
tion times branching ratio for scalar and vector lepto-
quark production for � = 1

2
. Mass limits of 160 GeV/c2

for scalar leptoquarks and 290 (240) GeV/c2 for vector
leptoquarks with Yang-Mills (minimal vector) couplings,
are obtained at the 95% con�dence level.
In conclusion, we have performed a search for second

generation leptoquarks in the ��+jets decay channel us-
ing 94�5 pb�1 of data collected with the D� detector at
the Fermilab Tevatron. No evidence for a signal is seen
and limits are set at the 95% con�dence level on the mass
of second generation leptoquarks. For equal branching
fractions to �q and �q (� = 1

2
) limits of 160 GeV/c2,

240 GeV/c2, and 290 GeV/c2 for SLQ, minimal vec-
tor, and Yang-Mills vector couplings, respectively, are
obtained.
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FIG. 3. Cross section limits in the �� + jets channel. The
VLQ cross sections are leading order[12], calculated at a scale
� = MVLQ . The SLQ cross sections are next-to-leading or-
der[13]. The calculation is done at a renormalization scale
� = MSLQ with uncertainties obtained from variation of the
renormalization/factorization scale from 2MSLQ to 1

2
MSLQ .

For the SLQ the limit is obtained at the intersection of the
experimental curve with the theoretical curve for � = 2MSLQ .
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